| Copyright | (C) 2011-2015 Edward Kmett (C) 2015 Ørjan Johansen (C) 2016 David Feuer |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Edward Kmett <ekmett@gmail.com> |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | Trustworthy |
| Language | Haskell2010 |
Data.Constraint.Forall
Description
This module uses a trick to provide quantification over constraints.
Synopsis
- type family Forall (p :: k -> Constraint) :: Constraint
- inst :: forall p a. Forall p :- p a
- class Forall (ComposeC p f) => ForallF (p :: k2 -> Constraint) (f :: k1 -> k2)
- instF :: forall p f a. ForallF p f :- p (f a)
- type Forall1 p = Forall p
- inst1 :: forall (p :: (* -> *) -> Constraint) (f :: * -> *). Forall p :- p f
- class Forall (Q p t) => ForallT (p :: k4 -> Constraint) (t :: (k1 -> k2) -> k3 -> k4)
- instT :: forall (p :: k4 -> Constraint) (t :: (k1 -> k2) -> k3 -> k4) (f :: k1 -> k2) (a :: k3). ForallT p t :- p (t f a)
- type family ForallV :: k -> Constraint
- class InstV (p :: k) c | k c -> p where
- forall :: forall p. (forall a. Dict (p a)) -> Dict (Forall p)
Documentation
type family Forall (p :: k -> Constraint) :: Constraint #
A representation of the quantified constraint forall a. p a.
Instances
| type Forall (p :: k -> Constraint) # | |
Defined in Data.Constraint.Forall | |
class Forall (ComposeC p f) => ForallF (p :: k2 -> Constraint) (f :: k1 -> k2) #
A representation of the quantified constraint forall a. p (f a).
Instances
| Forall (ComposeC p f) => ForallF (p :: k2 -> Constraint) (f :: k1 -> k2) # | |
Defined in Data.Constraint.Forall | |
instF :: forall p f a. ForallF p f :- p (f a) #
Instantiate a quantified constraint at type ForallF p fa.
inst1 :: forall (p :: (* -> *) -> Constraint) (f :: * -> *). Forall p :- p f #
Instantiate a quantified constraint on kind * -> *.
This is now redundant since became polykinded.inst
class Forall (Q p t) => ForallT (p :: k4 -> Constraint) (t :: (k1 -> k2) -> k3 -> k4) #
A representation of the quantified constraint forall f a. p (t f a).
Instances
| Forall (Q p t) => ForallT (p :: k4 -> Constraint) (t :: (k1 -> k2) -> k3 -> k4) # | |
Defined in Data.Constraint.Forall | |
instT :: forall (p :: k4 -> Constraint) (t :: (k1 -> k2) -> k3 -> k4) (f :: k1 -> k2) (a :: k3). ForallT p t :- p (t f a) #
Instantiate a quantified constraint at types ForallT p tf and a.
type family ForallV :: k -> Constraint #
A representation of the quantified constraint
forall a1 a2 ... an . p a1 a2 ... an, supporting a variable number of
parameters.
Instances
| type ForallV # | |
Defined in Data.Constraint.Forall type ForallV | |
class InstV (p :: k) c | k c -> p where #
Instantiate a quantified constraint as ForallV pc, where
c ~ p a1 a2 ... an.
Instances
| p ~ c => InstV (p :: Constraint) c # | |
Defined in Data.Constraint.Forall Associated Types type ForallV' p :: Constraint | |
| InstV (p a) c => InstV (p :: k1 -> k2 -> k3) c # | |
Defined in Data.Constraint.Forall Associated Types type ForallV' p :: Constraint | |
| p a ~ c => InstV (p :: k -> Constraint) c # | |
Defined in Data.Constraint.Forall Associated Types type ForallV' p :: Constraint | |